Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3
نویسندگان
چکیده
OSM-3 is a Kinesin-2 family member from Caenorhabditis elegans that is involved in intraflagellar transport (IFT), a process essential for the construction and maintenance of sensory cilia. In this study, using a single-molecule fluorescence assay, we show that bacterially expressed OSM-3 in solution does not move processively (multiple steps along a microtubule without dissociation) and displays low microtubule-stimulated adenosine triphosphatase (ATPase) activity. However, a point mutation (G444E) in a predicted hinge region of OSM-3's coiled-coil stalk as well as a deletion of that hinge activate ATPase activity and induce robust processive movement. These hinge mutations also cause a conformational change in OSM-3, causing it to adopt a more extended conformation. The motility of wild-type OSM-3 also can be activated by attaching the motor to beads in an optical trap, a situation that may mimic attachment to IFT cargo. Our results suggest that OSM-3 motility is repressed by an intramolecular interaction that involves folding about a central hinge and that IFT cargo binding relieves this autoinhibition in vivo. Interestingly, the G444E allele in C. elegans produces similar ciliary defects to an osm-3-null mutation, suggesting that autoinhibition is important for OSM-3's biological function.
منابع مشابه
Autoinhibition regulates the motility of the C. elegans intrafl agellar transport
Intrafl agellar transport (IFT) of particles containing structural and signaling proteins is critical to building and maintaining cilia and fl agella (Kozminski et al., 1993; Rosenbaum and Witman, 2002; Scholey, 2003). Defects in IFT in humans can give rise to dysfunctional cilia and produce a variety of disease states (Pazour and Rosenbaum, 2002). Sensory cilia in Caenorhabditis elegans neuron...
متن کاملWhy motor proteins team up - Intraflagellar transport in C. elegans cilia
Inside the cell, vital processes such as cell division and intracellular transport are driven by the concerted action of different molecular motor proteins. In C. elegans chemosensory cilia, 2 kinesin-2 family motor proteins, kinesin-II and OSM-3, team up to drive intraflagellar transport (IFT) in the anterograde direction, from base to tip, whereas IFT dynein hitchhikes toward the tip and subs...
متن کاملDauer pheromone and G-protein signaling modulate the coordination of intraflagellar transport kinesin motor proteins in C. elegans.
Cilia length and function are dynamically regulated by modulation of intraflagellar transport (IFT). The cilia of C. elegans amphid channel neurons provide an excellent model to study this process, since they use two different kinesins for anterograde transport: kinesin-II and OSM-3 kinesin together in the cilia middle segments, but only OSM-3 in the distal segments. To address whether sensory ...
متن کاملKinesin-3 KLP-6 Regulates Intraflagellar Transport in Male-Specific Cilia of Caenorhabditis elegans
Cilia are cellular sensory organelles whose integrity of structure and function are important to human health. All cilia are assembled and maintained by kinesin-2 motors in a process termed intraflagellar transport (IFT), but they exhibit great variety of morphology and function. This diversity is proposed to be conferred by cell-specific modulation of the core IFT by additional factors, but ex...
متن کاملKinesin-2 motors transport IFT-particles, dyneins and tubulin subunits to the tips of Caenorhabditis elegans sensory cilia: Relevance to vision research?
The sensory outer segments (OS) of vertebrate retinal photoreceptors, which detect photons of light, resemble the distal segments of Caenorhabditis elegans sensory cilia, which detect chemical ligands that influence the chemotactic movements of the animal. Based on fluorescence microscopy assays performed in sensory cilia of living, transgenic "wild type" and mutant C. elegans, combined with in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 174 شماره
صفحات -
تاریخ انتشار 2006